Comparison of Uptake between PureSorb-Q™40 and Regular Hydrophobic Coenzyme Q10 in Rats and Humans after Single Oral Intake

Kazuki NUKUI1, Toshihiko YAMAGISHI1, Hiromi MIYAWAKI2, Aikkarach KETTAWAN3, Tadashi OKAMOTO3 and Kiyoshi SATO1

1 Nisshin Pharma Inc., 25, Kanda-Nishiki-cho 1-chome, Chiyoda-ku, Tokyo 101–8441, Japan
2 Miyawaki Orthopedic Clinic, 3–1–6, Ariake-cho, Eniwa Hokkaido 061–1431, Japan
3 Department of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 518, Arise, Ikawadani-cho, Nishi-ku, Kobe 651–2180, Japan

(Received October 12, 2006)

Summary

Coenzyme Q10 (CoQ10) is a lipid-soluble antioxidant and essential component of the mitochondrial electron transfer system in the body, and is in wide use as a functional food material and cosmetic raw material. However, as CoQ10 is extremely lipid-soluble, absorption by the body is not easy. In general, people use soft-gel capsules in which CoQ10 is suspended in oil, and take these capsules with food. PureSorb-Q™40 (P40) was developed to improve CoQ10 processability and absorption when taken without food, and the present study compared the effects of food on absorption between P40 and conventional lipid-soluble CoQ10 in rats and humans. The results of a rat study showed higher uptake when P40 was administered in the fasting state or with food compared to lipid-soluble CoQ10. The results of a human study showed that uptake was favorable when P40 was administered in the fasting state, and even when administered postprandially, a significant difference was noted in uptake rate up to 6 h after intake and uptake volume up to 8 h after intake when compared to lipid-soluble CoQ10. These results show that any CoQ10 product using P40 can be quickly and reliably absorbed by the body regardless of dosage form or intake time.

Key Words coenzyme Q10, water-soluble, PureSorb-Q™40, uptake

Materials and Methods

Materials. Male Sprague-Dawley rats (6–7-wk-old; body weight: 190–230 g) were purchased from Japan SLC Inc. (Shizuoka, Japan). The PureSorb-Q™40 (Water-soluble type CoQ10 powder. CoQ10 content is 40 w/w%, hereafter P40) developed by Nisshin Pharma Inc. (Tokyo, Japan) was used. In a human oral intake study, P40 tablets, made by Nisshin Pharma Inc., and commercially available lipid-soluble CoQ10 (Q10 oil) soft-gel capsules (30 mg of CoQ10 per capsule) were used. Each P40 tablet weighed 300 mg and contained 30 mg of CoQ10, and other ingredients included starch, reduced maltose, agar, dextrin, cellulose, sucrose ester, glycerin and fine silicon dioxide.

Subjects. Subjects in the human study comprised 20 healthy male volunteers at Miyawaki Orthopedics Hospital (Eniwa, Hokkaido). Mean age was 23.3 y (range, 20–40 y) and mean BMI was 21.2 kg/m² (range, 18–26 kg/m²).

Rat single-dose study. Rats were randomly divided...
into the following 4 groups based on body weight: control group (n=4, food+water); prandial P40 group (n=12, ad libitum access to food and P40 administration); fasting P40 group (overnight fasting (12 h from 20:00 to 08:00 the next morning) and P40 administration); prandial Q10 oil group (ad libitum access to food and Q10 oil administration); and fasting Q10 oil group (overnight fasting (12 h from 20:00 to 08:00 the next morning) and Q10 oil administration). P40 was directly administered to the stomach using an oral tube by dissolving CoQ10 at 3.33 mg/kg body weight (for humans, 200 mg/60 kg body weight). Q10 oil was administered as follows: A commercially available soft-gel capsule was cut using scissors to remove the contents. Water was added, and the resulting solution was warmed for 10 min in a 50˚C water bath, then subjected to ultrasonication to prepare a homogenized solution. Intake volume and methods for Q10 oil were the same as those for P40. After CoQ10 administration, no food was given to any group, but the rats had ad libitum access to water. At 6, 10 and 24 h after administration, a blood sample was collected for measuring serum CoQ10 by killing the rats under anesthesia. Rats were fed using Lab MR Stock (Japan SLC).

Human single-dose study. The study was conducted on consenting volunteers under the supervision of the chief investigator and collaborators in accordance with the Declaration of Helsinki, with approval from the Investigational Review Board (Miyawaki Orthopedic Clinic IRB). Screened subjects were randomly divided into 2 groups: fasting group (n=10); and postprandial group (n=10). In each group, P40 and Q10 oil were administered in a crossover fashion. In other words, a single oral dose 2-group 2-period crossover study was conducted. In the single-dose study, either 2 P40 tablets or 2 Q10 oil capsules (60 mg CoQ10) were administered with food or in the fasting state. Fasting-state subjects were instructed to fast for 12 h, and were then orally administered CoQ10 with 200 mL of water. Conversely, postprandial subjects were orally administered CoQ10 immediately after breakfast with 200 mL of water. In both groups, subjects ate the same lunch 4.5 h after CoQ10 intake. When taking CoQ10 with food, a typical Japanese breakfast was served (600–700 kcal, protein : fat : carbohydrate (PFC) ratio, 15 : 25 : 60) to minimize the effects of dietary differences on CoQ10 absorption. Physical tests, clinical tests (hematological and blood biochemical tests) and doctor interviews were performed before taking CoQ10 and after collecting the final blood sample. Blood samples were collected before CoQ10 intake and 2, 4, 6, 8, 12 and 24 h after intake to measure serum CoQ10 levels.

Measurement of serum CoQ10 levels. Rat serum CoQ levels were measured by HPLC using an electrochemical detector according to the methods of Okamoto et al. (11). With each human blood sample, 2 mL of blood was centrifuged at 800×g for 10 min, and the resulting serum was subjected to the above-mentioned methods to quantify reduced and total CoQ levels.

Data analysis. In the rat single-dose study, basic statistics (mean and SD) were calculated for each group, and numerical data were expressed as mean±SE. Uptake rate was calculated based on the slope of serum CoQ10 level at 6 h after intake. Unpaired t-tests were used to compare serum CoQ10 levels at 6 h after intake and uptake rate among different groups. In the human single-dose study, basic statistics (mean±SD) were calculated for fasting and postprandial groups, and numerical data were expressed as mean±SE. An unpaired t-test was used to compare uptake rate at 6 h after intake and area under the blood drug concentration-time curve for up to 8 h after intake (ΔAUC) between the fasting and postprandial groups, and paired t-tests were used to compare P40 and Q10 oil intake within each group. Values of p<0.05 were considered statistically significant.

Results

Rat serum CoQ10 levels following CoQ10 intake

Figure 1 shows changes in serum CoQ10 levels up to 24 h after oral administration of P40 or Q10 oil. Following fasting administration, serum CoQ10 levels peaked 6 h after intake for the P40 group at 0.208±0.014 μg/mL, but, for the Q10 oil group, no serum CoQ10 was observed at 6, 10 or 24 h after intake. Following prandial administration, serum CoQ10 levels peaked 6 h after intake for the P40 group at 0.270±0.044 μg/mL, but for the Q10 oil group serum CoQ10 levels peaked at 10 h after intake, at 0.183±0.017 μg/mL, which is comparable to serum CoQ10 levels at 10 h after intake for the P40 group (0.175±0.010 μg/mL). As shown in Table 1, on the other hand, the endogenous CoQ10 levels were not changed after oral administration of either P40 or Q10 oil.

CoQ10 uptake rates at 6 h after intake were compared among the groups. CoQ10 uptake rate for the prandial P40 group (0.031±0.008 μg/mL/h) was 4.4-times greater than that for the prandial Q10 oil group (0.007±0.002 μg/mL/h) (p<0.05). In addition, CoQ10 uptake rate for the fasting Q10 oil group was zero, com-
pared to 0.021 ± 0.003 µg/mL/h for the fasting P40 group.

Human serum CoQ10 levels following CoQ10 intake (Figs. 2, 3)

The difference in uptake rate between P40 and Q10 oil in rats was compared in the human study. Figure 2 shows changes in serum CoQ10 levels for 24 h after P40 and Q10 oil intake in humans (increase level: Δ).

Unlike in rats, serum CoQ10 levels peaked at 6 h after intake for fasting P40, postprandial P40 and fasting Q10 oil groups, and as with rats, serum CoQ10 levels quickly increased for the postprandial P40 group. Uptake rate up to 6 h after intake for the fasting P40 group was 0.048 ± 0.011 µg/mL/h, and tended to be faster than that for the fasting Q10 oil group (0.018 ± 0.006 µg/mL/h) or postprandial Q10 oil group (0.026 ± 0.008 µg/mL/h), but no significant differences were identified. In addition, uptake rate up to 6 h after intake for the postprandial P40 group (0.065 ± 0.015 µg/mL/h) was 2.6-fold faster than that for the postprandial Q10 oil group (p < 0.05).

To confirm the uptake volume of orally ingested exogenous CoQ10, AUC for 8 h after intake was calculated (Fig. 3). The AUC was 0.828 ± 0.211 µg·h/mL for the fasting P40 group, 2.9-fold higher than for the fasting Q10 oil group (0.288 ± 0.109 µg·h/mL), but no significant differences were identified.

The AUC for the postprandial P40 group was 1.869 ± 0.267 µg·h/mL, 2.3-fold greater than that for the fasting P40 group (p < 0.01) and 3.4-fold greater than that for the postprandial Q10 oil group (p < 0.01).

In the present study, subjective symptoms, objective symptoms, physiological test findings and clinical laboratory test findings did not indicate any undesirable symptoms resulting from consumption of the investigational products.

Discussion

Exogenous CoQ10, such as dietary CoQ10, is absorbed by epithelial cells in the small intestine and transported via the lymphatic system to the liver, where most CoQ10 stays. CoQ10 absorption and its metabolic pathway are believed to be broadly similar in rats and humans (12). Exogenous and endogenous CoQ10 in the liver is bound to very low density lipoprotein (VLDL) and then secreted into the blood (13). The serum of healthy adults contains about 1 µM of CoQ10, and most CoQ10 exists as reduced CoQ10 in the lipoprotein fraction (14). Serum samples are often used to measure the absorption of exogenous CoQ10 or CoQ10 deficiency in the body. However, marked differences have been seen in increased serum CoQ10 levels due to intake of exogenous CoQ10. This may be attributable to individual differences and dietary oil contents, and these factors have been shown to markedly affect serum CoQ10 levels (15). To alleviate the effects of diet on CoQ10 absorption, PureSorb-Q™40 was developed, and the present study investigated CoQ10 uptake in rats and humans. The present results clarified that, for the administration of P40, the effects of food intake were small and CoQ10 was absorbed promptly even when administered in a fasting state. CoQ10 absorption is improved by postprandial P40 intake compared to postprandial lipid-soluble CoQ10 intake. The results of each study are described in

Table 1. Changes in serum coenzyme Q10 concentration in rats after single oral intake of 3.33mg/kg.

<table>
<thead>
<tr>
<th></th>
<th>6 h after the start of intake</th>
<th>10 h after the start of intake</th>
<th>24 h after the start of intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting + P40</td>
<td>0.353 ± 0.030</td>
<td>0.368 ± 0.025</td>
<td>0.390 ± 0.025</td>
</tr>
<tr>
<td>Feed + P40</td>
<td>0.370 ± 0.015</td>
<td>0.380 ± 0.032</td>
<td>0.368 ± 0.011</td>
</tr>
<tr>
<td>Fasting + Q10 oil</td>
<td>0.360 ± 0.032</td>
<td>0.370 ± 0.018</td>
<td>0.390 ± 0.026</td>
</tr>
<tr>
<td>Feed + Q10 oil</td>
<td>0.353 ± 0.011</td>
<td>0.370 ± 0.021</td>
<td>0.378 ± 0.040</td>
</tr>
</tbody>
</table>

Serum coenzyme Q10 concentration of control group is 0.373 ± 0.011 µg/mL (n = 4).

Values represent mean ± SE (n = 4).

Unit is µg/mL.
the following sections.

In the rats, CoQ9 is the predominant homologue, and CoQ10 accounts for its several to a dozens of percent (11). CoQ9 and CoQ10 are widely distributed in the spleen, kidney, heart, liver and plasma. In the liver and plasma, the ratio of reduced CoQ to total CoQ (reduced and oxidized CoQ) is 70–80%, compared to 30% in other tissues (16). The present results did not show any marked differences in serum CoQ10 levels following oral intake of P40 or Q10 oil, and the ratio of reduced CoQ for CoQ9 and CoQ10 was 70–80%. This indicates that exogenous CoQ10 intake does not affect the ratio of reduced CoQ in the body. Furthermore, for the fasting Q10 oil group, little chronological change in serum CoQ10 levels was observed, suggesting that in rats, lipid-soluble CoQ10 is not absorbed if not consumed with food. Conversely, under the same conditions, the P40 group displayed a favorable uptake rate of CoQ10, and P40 improved absorption of CoQ10 in the fasting state, while CoQ10 uptake was higher for postprandial P40 than for postprandial lipid-soluble CoQ10.

In the human study, uptake rate for the fasting P40 group was almost the same as for the postprandial Q10 oil group. This means that P40 improves the uptake rate for the fasting state. Hence, although most currently available CoQ10 supplements need to be taken with food, P40 does not, and P40 sufficiently increases serum CoQ10 levels whether taken in the fasting state or with food. Serum CoQ10 levels for the postprandial P40 group were higher than those for the postprandial Q10 oil group, and as with rats, this was attributed to the fact that the uptake rate for the postprandial P40 group 6 h after intake was 2.6-fold faster compared to the postprandial Q10 oil group.

In the present study, the second peak in serum CoQ10 levels was seen at 12 h after intake for the Q10 oil group (Fig. 2). This was attributed to enterohepatic circulation of exogenous CoQ10 uptake by the small intestine, followed by secretion into plasma together with endogenous CoQ10 synthesized in the liver. In a study where deuterium-labeled CoQ10 was administered to humans, serum CoQ10 levels peaked at 6 h after intake, but a second peak was seen 24 h after intake (12), suggesting a similar mechanism was at work for the second peak observed in the present study. For the prandial Q10 oil group in rats, however, the second peak in serum CoQ10 levels was not observed. The difference of the peak between humans and rats might be affected by the collecting interval of blood samples and/or the lunch intake in humans.

When improving the absorption of minimally soluble drugs, reducing particle size is a common technique. P40 is a water-soluble powder with a mean particle size of about 0.19 μm during water dispersion, and was designed so that easy emulsification could occur with bile acid in the intestinal tract, followed by rapid absorption by the intestinal mucosal layer. The tablets used in the present human single-dose study disintegrate within 20 min of oral administration, and changes in serum CoQ10 levels were comparable to the results of a rat study where powdered P40 was orally administered, suggesting that regardless of dosage form, the particle design of P40 is maintained in the small intestine following oral consumption. These findings clarify that compared to lipid-soluble CoQ10, P40 is quickly and reliably absorbed by the body when consumed in the fasting state or with food. P40 may thus represent a CoQ10 product that is quickly and reliably absorbed by the body regardless of dosage form or intake time.

REFERENCES