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by direct measurement of activity and oleic acid incor-
poration into cellular cholesteryl esters, was increased
in CaCo-2 cells incubated with micelles containing cho-
lesterol (37). This was associated with a marked increase
in the movement of plasma membrane cholesterol to
the endoplasmic reticulum. In contrast, in cells incu-
bated with micelles containing B-sitosterol or stigmas-
terol, which do not cause cholesterol influx, ACAT ac-
tivity was not altered. Campesterol, however, a plant
sterol that does cause an increase in the influx of plasma
membrane cholesterol, increased the activity of ACAT.
As one might expect from these results, the inclusion
of Psitosterol within a micelle containing cholesterol
will cause less cholesterol to be taken up, cause less cho-
lesterol to influx from the plasma membrane to the
endoplasmic reticulum, and cause an attenuation of
ACAT activity compared to cells incubated with choles-
terol alone. The results, therefore, are very consistent
with what is already known about the regulation of cel-
lular ACAT activity.

In cells incubated with micelles containing oleic acid
and cholesterol, cholesterol synthesis and HMG-CoA re-
ductase activity were significantly decreased. This makes
good sense and agrees with results from others demon-
strating a decrease in intestinal cholesterol synthesis
after the ingestion of cholesterol (38). Unexpectedly,
however, cholesterol synthesis was also decreased in
cells incubated with micelles containing p-sitosterol. As
micellar B-sitostero]l did not promote the influx of
plasma membrane cholesterol and, therefore, would
not be expected to expand intracellular pools of choles-
terol, one cannot invoke a change in cholesterol traf
ficking to explain this effect. In addition, reductase ac-
tivity was also decreased in cells incubated with micelles
containing stigmasterol, another related plant sterol
that did not alter cholesterol influx. A decrease in re-
ductase activity in cells incubated with micellar B-sitos-
terol was associated with a decrease in reductase mass
and mRNA levels. In studies done in livers and isolated
mononuclear cells from individuals with B-sitosterol-
emia, HMG-CoA reductase activities were decreased
and LDL binding was increased, compared to controls
(12, 13). Additionally, hepatic mRNA levels of reduc-
tase and enzyme mass were decreased as well. Although
it is unclear why there is a decrease in the expression
of HMG-CoA reductase in individuals with B-sitosterol-
emia, it has been postulated that there is an inherent
defect in the gene for the enzyme (12). This presump-
tion is based on previous data showing that B-sitosterol,
added in ethanol, does not regulate HMG-CoA reduc-
tase activity in cultured fibroblasts (39) or in livers of
rats infused intravenously with Intralipid containing B-
sitosterol (40). If these observations can be applied to
intestine and to our present results in CaCo-2 cells (that
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B-sitosterol does not have a direct effect on reductase
activity), then other mechanisms must be entertained
for our observations. It would be unlikely that B-sitos-
terol is metabolized to a more polar sterol within the
cell. In data not shown, analysis by gas—liquid chroma-
tography of cells and medium prior to and after incuba-
tion with B-sitosterol revealed no qualitative or quantita-
tive changes to the sterol. Moreover, if this were a
potential mechanism, ACAT activity would be increased
and more cholesterol would move from the plasma
membrane to the endoplasmic reticulum for esterifica-
tion (unpublished observations in CaCo-2 cells). This
did not occur. Although the present results suggest that
P-sitosterol does not cause the influx of plasma mem-
brane cholesterol, it remains possible that the plant ste-
rol alters the flux of cholesterol in another intracellular
pool that regulates reductase but not ACAT activity.

When sterols accumulate within cells, membrane pro-
teins that bind to the sterol-regulatory element of the
HMG-CoA reductase gene escape proteolysis and hence
do not bind to the promoter. This leads to suppression
of gene transcription for reductase (41). It is possible
that high concentrations of B-sitosterol within the cell
could also interfere with proteolysis of a regulatory
binding protein or proteins thus causing a decrease in
HMG-CoA reductase expression. In the previous studies
cited, it would be unlikely that sufficient plant sterol was
taken up to cause regulation of reductase activity (39,
40).

In previous studies from our laboratory, we have dem-
onstrated that unlike fatty acids, phosphatidylcholine,
or lysophosphatidylcholine, which cause an increase in
apoB secretion, cholesterol does not induce lipopro-
tein secretion (19, 42). Likewise, in the present study,
B-sitosterol had no effect on the secretion of apoB by
CaCo-2 cells. In individuals with B-sitosterolemia, there
are no recognized nutritional deficiencies and lipid ab-
sorption by the small intestine appears to be normal (8,
9). Moreover, treating hypercholesterolemic patients
with gram quantities of P-sitosterol does not alter
plasma triacylglycerol levels and has no observed nutri-
tional side effects (26). We would conclude, therefore,
that like cholesterol, plant sterols do not alter the num-
ber of lipoprotein particles secreted by the intestine.
The data would suggest, however, that in individuals in-
gesting large amounts of PB-sitosterol as a lipid lowering
agent, lipoprotein particles secreted by the intestine will
be deficient in cholesteryl esters.fl
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